

Portland Deep Direct-Use Thermal Energy Storage (DDU-TES) Feasibility Study

Project Officer: Arlene Anderson Total Project Funding: \$720,000

November 13, 2017

John Bershaw, PI Portland State University

Deep Direct-Use Feasibility Studies Technical and Economic Working Group Kick-Off Meeting

This presentation does not contain any proprietary confidential, or otherwise restricted information.

Heat Flow Map of the USA

Reference: Blackwell, D.D., Richards, M.C., Frone, Z.S., Batir, J.F., Williams, M.A., Ruzo, A.A., and Dingwall, R.K., 2011, "SMU Geothermal Laboratory Heat Flow Map of the Conterminous United States, 2011". Supported by Google.org. Available at http://www.smu.edu/geothermal.

Climate for Portland, Oregon

Direct Deep Use Thermal Energy Storage

Project Objectives

- Determine "feasibility" of DDU-TES for critical infrastructure in the Portland Metro Area
 - Geological/Technical Assessment
 - Resource Modeling
 - Regulatory Framework
 - Infrastructure Characterization
 - Hazard Assessment
 - End-User Demands and Market Transformation

- Develop tools for resource assessment that can be used elsewhere in the United States
 - Modeling tools may be applied to other low temperature systems throughout the United States

Collaborative and Multi-Disciplinary

Portland Basin Geology

Flow Modeling

- Goal is to produce an estimate of recoverable heat (resource) at OHSU
- SUTRA will be used to model groundwater flow and heat transport
- Example output: 5-year recoverable heat based on 500 meter injector/producer well spacing

Regulatory Framework

- Goal is to understand the regulatory framework for DDU-TES in the Portland Metro Area
 - Can we secure all necessary permits to implement this technology?

- The City of Portland will engage all relevant public regulatory agencies
 - Oregon Dept. of Environmental Quality (pollution safeguards)
 - Oregon Dept. of Water Resources (well construction and permitting of water use)
 - Oregon Dept. of Energy (construction exemptions for energy industry wells)
 - City of Portland Bureau of Development Services (land use and permitting)
 - Oregon Dept. of Geology and Mineral Industries (oil, gas, and geothermal wells)

Oregon Health Sciences Expansion

Oregon Health Sciences Expansion

Current Energy Use on Marquam Hill Campus

Annual electric use: 16.5 MWa

Annual Natural gas use: 6.7 million Therms

OHSU 20-Year Facilities Master Plan

- Achieve a high level of environmental sustainability with all campus development and facility projects.
- Create buildings that maximize conservation of water and energy use
- · Monitor and commission energy conserving systems through the life of each building
- Plan for the expansion and upgrade of generation and distribution infrastructure
- Enable modular expansion of capacity and efficient, staged operation.
- Means for financing energy improvements on the OHSU campuses are currently under study.
- Marquam Hill has district heating (centralized). There are currently no plans for district heating on the lower campus, though this project may introduce a viable option.

Project Infrastructure

Project Milestones

Task	Quarter 1			С	Quarter 2			Quarter 3			Quarter 4			Quarter 5			Quarter 6			Quarter 7			Quarter 8		
	1	2	2 3	4	5	6	7	8	3 9	10	1.	1 12	13	14	15	16	17 18		_	21	22	23	24		
1.0 Constrain Basin Geometry and Hazards																									
1.1 Develop Basin and Play Geometry Maps																									
1.1.1 Create Preliminary Basin Geometry										r	ИS	1.1.1.1										MS 1	.1.1.2		
1.1.2 Incorporate Structure Into 3D Basin Model										ſ	VIS	1.1.2.1										MS 1	.1.2.2		
1.2 Seismic and Structural Hazards Analysis										·													1.2.1		
1.2.1 Assess Risk for Infrastructure																	MS 1.2.1.	1	Т				T		
1.2.2 Assess Risk for Induced Seismicity																		_				MS 1	.2.2.1		
1.3 Geochemical Analysis											м	IS 1.3.1										MS	1.3.2		
2.0 Heat and Fluid Flow Simulation																									
2.1 Develop Tools for Rapid Update of Model Input											м	IS 2.1.1													
2.2 Preliminary Modeling to Assess Data Value																							_		
2.2.1 Estimate Thermal Properties					MS 2	2.2.1.1																	+		
2.2.2 Estimate Hydrogeological Properties					MS 2	2.2.2.1																	+		
2.3 Model Subsurface Fluid and Thermal Flux																	MS 2.3.	1					+		
2.4 Assess Resource for OHSU and PDX																									
2.4.1 Estimate the Heat Source at OHSU and PDX																						MS 2	.4.1.1		
2.4.2 Evaluate Uncertainty in the Estimated Resource																							.4.2.		
3.0 Resource Engineering																									
3.1 Resource Extraction Design					M:	3.1.1					М	IS 3.1.2							Т						
3.2 Estimate End-User Needs and Convert to Resource																									
Criteria																	MS 3.2.	1							
4.0 Market Transformation Plan																	MS 4.0.						+		
4.1 Regulatory Review and Evaluation																	1115 4101						+		
4.1.1 Regulatory Agency Engagement																							+		
4.2 Evaluation of Market Potential and Implementation																							+		
Feasibility																									
5.0 Manage the Project Effectively																									
5.1 Quarterly Team Meetings				_					_			_						_			_				
5.2 Summary and Recommendations																						MS	5.2.		
3.2 summary and recommendations																						IVIS	J. 2.		
Color-coded by Responsible Party			PSU	J																					
			USC	SS																					
			Alta	rock																					
			City	of Po	ortlar	nd / OH	ISU																		
			All		T	T																			

14 | US DOE Geothermal Office

Project Milestones

4th Quarter: Basin Geometry (PSU)

Geochemical Analysis (PSU)

Infrastructure Design (AltaRock)

6th Quarter: Seismic Hazard Analysis (PSU)

Resource Estimates (USGS)

Regulatory Review (City of Portland)

8th Quarter: Market Transformation Plan (City of Portland)

Recommendations (All)

What is "Feasibility"?

Cost-Benefit Analysis:

Heating resource available

Hospital needs

Energy security

Cost of implementation

Market Transformation

Greater Portland metro area

Portland International Airport (PDX)

Collaboration & Data Sharing

- We value working group feedback on our plan and milestone deliverables
- Hope to learn from working group "best practices" regarding technology and project management

Data Management Plan

- End products include three master's theses and summary reports by sub-awardees
- We will create tools that can be used to estimate DDU-TES resources elsewhere so reproducibility is critical
- Products and data will be made publicly available by uploading to the Geothermal Data Repository (DOE-GDR) using applicable templates no later than one quarter after generation using appropriate standards